69 research outputs found

    It's just a feeling: why economic models do not explain

    Get PDF
    Julian Reiss correctly identified a trilemma about economic models: we cannot maintain that they are false, but nevertheless explain and that only true accounts explain. In this reply we give reasons to reject the second premise – that economic models explain. Intuitions to the contrary should be distrusted

    Neo-Aristotelian Naturalism and the Evolutionary Objection: Rethinking the Relevance of Empirical Science

    Get PDF
    Neo-Aristotelian metaethical naturalism is a modern attempt at naturalizing ethics using ideas from Aristotle’s teleological metaphysics. Proponents of this view argue that moral virtue in human beings is an instance of natural goodness, a kind of goodness supposedly also found in the realm of non-human living things. Many critics question whether neo-Aristotelian naturalism is tenable in light of modern evolutionary biology. Two influential lines of objection have appealed to an evolutionary understanding of human nature and natural teleology to argue against this view. In this paper, I offer a reconstruction of these two seemingly different lines of objection as raising instances of the same dilemma, giving neo-Aristotelians a choice between contradicting our considered moral judgment and abandoning metaethical naturalism. I argue that resolving the dilemma requires showing a particular kind of continuity between the norms of moral virtue and norms that are necessary for understanding non-human living things. I also argue that in order to show such a continuity, neo-Aristotelians need to revise the relationship they adopt with empirical science and acknowledge that the latter is relevant to assessing their central commitments regarding living things. Finally, I argue that to move this debate forward, both neo-Aristotelians and their critics should pay attention to recent work on the concept of organism in evolutionary and developmental biology

    Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses

    Get PDF
    The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined

    Abstraction in ecology : reductionism and holism as complementary heuristics

    Get PDF
    In addition to their core explanatory and predictive assumptions, scientific models include simplifying assumptions, which function as idealizations, approximations, and abstractions. There are methods to investigate whether simplifying assumptions bias the results of models, such as robustness analyses. However, the equally important issue - the focus of this paper - has received less attention, namely, what are the methodological and epistemic strengths and limitations associated with different simplifying assumptions. I concentrate on one type of simplifying assumption, the use of mega parameters as abstractions in ecological models. First, I argue that there are two kinds of mega parameters qua abstractions, sufficient parameters and aggregative parameters, which have gone unnoticed in the literature. The two are associated with different heuristics, holism and reductionism, which many view as incompatible. Second, I will provide a different analysis of abstractions and the associated heuristics than previous authors. Reductionism and holism and the accompanying abstractions have different methodological and epistemic functions, strengths, and limitations, and the heuristics should be viewed as providing complementary research perspectives of cognitively limited beings. This is then, third, used as a premise to argue for epistemic and methodological pluralism in theoretical ecology. Finally, the presented taxonomy of abstractions is used to comment on the current debate whether mechanistic accounts of explanation are compatible with the use of abstractions. This debate has suffered from an abstract discussion of abstractions. With a better taxonomy of abstractions the debate can be resolved.Peer reviewe

    Factive Scientific Understanding Without Accurate Representation

    Get PDF
    This paper analyzes two ways idealized biological models produce factive scientific understanding. I then argue that models can provide factive scientific understanding of a phenomenon without providing an accurate representation of the (difference-making) features of their real-world target system(s). My analysis of these cases also suggests that the debate over scientific realism needs to investigate the factive scientific understanding produced by scientists’ use of idealized models rather than the accuracy of scientific models themselves

    A Tale of Four Stories: Soil Ecology, Theory, Evolution and the Publication System

    Get PDF
    International audienceBACKGROUND: Soil ecology has produced a huge corpus of results on relations between soil organisms, ecosystem processes controlled by these organisms and links between belowground and aboveground processes. However, some soil scientists think that soil ecology is short of modelling and evolutionary approaches and has developed too independently from general ecology. We have tested quantitatively these hypotheses through a bibliographic study (about 23000 articles) comparing soil ecology journals, generalist ecology journals, evolutionary ecology journals and theoretical ecology journals. FINDINGS: We have shown that soil ecology is not well represented in generalist ecology journals and that soil ecologists poorly use modelling and evolutionary approaches. Moreover, the articles published by a typical soil ecology journal (Soil Biology and Biochemistry) are cited by and cite low percentages of articles published in generalist ecology journals, evolutionary ecology journals and theoretical ecology journals. CONCLUSION: This confirms our hypotheses and suggests that soil ecology would benefit from an effort towards modelling and evolutionary approaches. This effort should promote the building of a general conceptual framework for soil ecology and bridges between soil ecology and general ecology. We give some historical reasons for the parsimonious use of modelling and evolutionary approaches by soil ecologists. We finally suggest that a publication system that classifies journals according to their Impact Factors and their level of generality is probably inadequate to integrate "particularity" (empirical observations) and "generality" (general theories), which is the goal of all natural sciences. Such a system might also be particularly detrimental to the development of a science such as ecology that is intrinsically multidisciplinary

    Comparative Phylogeography of a Coevolved Community: Concerted Population Expansions in Joshua Trees and Four Yucca Moths

    Get PDF
    Comparative phylogeographic studies have had mixed success in identifying common phylogeographic patterns among co-distributed organisms. Whereas some have found broadly similar patterns across a diverse array of taxa, others have found that the histories of different species are more idiosyncratic than congruent. The variation in the results of comparative phylogeographic studies could indicate that the extent to which sympatrically-distributed organisms share common biogeographic histories varies depending on the strength and specificity of ecological interactions between them. To test this hypothesis, we examined demographic and phylogeographic patterns in a highly specialized, coevolved community – Joshua trees (Yucca brevifolia) and their associated yucca moths. This tightly-integrated, mutually interdependent community is known to have experienced significant range changes at the end of the last glacial period, so there is a strong a priori expectation that these organisms will show common signatures of demographic and distributional changes over time. Using a database of >5000 GPS records for Joshua trees, and multi-locus DNA sequence data from the Joshua tree and four species of yucca moth, we combined paleaodistribution modeling with coalescent-based analyses of demographic and phylgeographic history. We extensively evaluated the power of our methods to infer past population size and distributional changes by evaluating the effect of different inference procedures on our results, comparing our palaeodistribution models to Pleistocene-aged packrat midden records, and simulating DNA sequence data under a variety of alternative demographic histories. Together the results indicate that these organisms have shared a common history of population expansion, and that these expansions were broadly coincident in time. However, contrary to our expectations, none of our analyses indicated significant range or population size reductions at the end of the last glacial period, and the inferred demographic changes substantially predate Holocene climate changes
    • …
    corecore